Nieuwenhuyzen, M., Wen, H. & Wilkins, C. J. (1992). Z. Anorg. Allg. Chem. 615, 143–148.

- Persson, I. (1982). Acta Chem. Scand. Ser. A, 36, 7-13.
- Ponomarev, V. I., Arutyunyan, L. D. & Atovmyan, L. O. (1984). Sov. Phys. Crystallogr. 29, 538-544; English translation of Kristallografiya, 29, 910-922.
- Reynolds, W. L. (1970). Prog. Inorg. Chem. 12, 1-99.
- Sandström, M. (1978). Acta Chem. Scand. Ser. A, 32, 519-525.
- Sandström, M. & Persson, I. (1978). Acta Chem. Scand. Ser. A, 32, 95-100.
- Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. Univ. of Göttingen, Germany.
- Tzou, J.-R., Chang, S.-C. & Norman, R. E. (1993). J. Inorg. Biochem. 51, 480.
- Zachariasen, W. H. (1968). Acta Cryst. A24, 212-216.

Acta Cryst. (1995). C51, 2252-2255

A μ-Oxo-bis[iron(III) porphyrin] Complex

WILLIAM P. SCHAEFER

Division of Chemistry & Chemical Engineering, The Beckman Institute, Mail Code 139-74, California Institute of Technology, Pasadena, California 91125, USA

PAUL E. ELLIS, JAMES E. LYONS AND S. N. SHAIKH

Research and Development Department, Sun Company Inc., Marcus Hook, Pennsylvania 19061, USA

(Received 16 February 1995; accepted 27 April 1995)

Abstract

Partial nitration of iron(III) 2,3,7,8,12,13,17,18octaethylporphyrin chloride [Fe^{III}(OEP)Cl] gives the μ oxo-bis(5,15-dinitro) compound μ -oxo-bis[2,3,7,8,12,-13,17,18-octaethyl-5,15-dinitroporphyrinato)iron(III)], [Fe₂(C₃₆H₄₂N₆O₄)₂O], which is similar to other μ oxo-iron(III) porphyrin complexes but with less ruffling of the porphyrin structure. The porphyrin planes are not parallel [the angle between plane normals is 169 (2)°] and the Fe—O—Fe angle is 167.9 (3)°. As expected, the Fe atoms are significantly displaced from the porphyrin planes towards the bridging O atom: 0.46 Å for Fe1 and 0.49 Å for Fe2. The two porphyrin residues are eclipsed with respect to their C atoms, but the nitro groups are staggered by 90° from one residue to the other.

Comment

The unsubstituted μ -oxo-bis[iron(III) octaethylporphyrin] complex is inactive as a catalyst for the oxidation of alkanes, but incorporation of highly electron-withdrawing groups in the *meso* position leads

©1995 International Union of Crystallography Printed in Great Britain – all rights reserved to a soluble active catalyst for these reactions. Both dinitro and tetranitro porphyrins give active μ -oxo-dimer catalysts, with the tetranitro compound being roughly twice as active. Both species show similar selectivities in the production of alcohols from alkanes.

The dinitro compound described here, (I), is prepared by nitration of Fe(OEP)Cl by NO₂ under N₂ in CH_2Cl_2 (Ellis, Lyons & Shaikh, 1994).

An ORTEPII (Johnson, 1976) drawing of the title molecule, (I), is shown in Fig. 1, tilted about 12° from its least-squares plane and showing the numbering system. The two porphyrin skeletons are nearly superimposed. This is the same conformation as observed in μ -oxo-bis(iron 5,15-dimethyloctaethylporphyrin) (Lay, Buchler, Kenny & Scheidt, 1986) and in μ -oxo-bis-[octaethylporphinatoiron(III)] (Cheng, Hobbs, Debrunner, Erlebacher, Shelmutt & Scheidt, 1995), but it is different from the staggered geometry found in the tetraphenyl derivative (Hoffman, Collins, Day, Fleischer, Srivastava & Hoard, 1972; Strauss, Pawlik, Skowyra, Kennedy, Anderson, Spartalian & Dye, 1987) and the tetrakispentafluorophenyl compound (Gold, Javarai, Doppelt, Fischer & Weiss, 1988). In all these compounds, the Fe^{III} atom is significantly out of porphyrin mean plane [by 0.49 and 0.50 Å (Strauss et al., 1987), and 0.67 Å (Gold et al., 1988)]. The present dinitro compound shows the least displacement [0.46 and 0.49 Å]. Additionally, the porphyrin skeleton is less ruffled in the dinitro compound than in others with bulkier substituents in the β positions (see Henling, Schaefer, Hodge, Hughes, Grav, Lyons & Ellis, 1993, for two examples). The maximum displacements from the porphyrin plane are 0.24 Å in one porphyrin (by atom C15), and 0.18 Å in the other (C41). Again, these distances are comparable to those observed in the dimethyloctaethyl compound (Lay et al., 1986) and the tetrakispentafluorophenyl compound (Gold et al., 1988), but slightly smaller than the maximum of 0.30 Å found in the tetraphenyl compound (Strauss et al., 1987). The octaethyl compound (Cheng et al., 1995) is the least ruffled of all, with maximum displacements of only 0.12 and 0.15 Å from the mean porphyrin plane. Highly ruffled porphyrins show pyrrole C atoms as much as 1.2 Å out of plane.

Fig. 1. An ORTEPII (Johnson, 1976) drawing of the molecule with 50% probability ellipsoids showing the atom-numbering system. H atoms are not shown. The numbering of porphyrin C atoms is regular around the ring; only a selection are numbered. Only methyl C atoms of the ethyl groups are numbered; the numbers of the adjacent CH₂ C atoms are 1 less. Atoms shown as open circles were refined with isotropic displacement parameters.

The geometry of the central cavity of this compound is virtually the same as those of the compounds mentioned above: the Fe-N distances average 2.090(7)Å and the distance CT-N (CT is the average of the four N-atom coordinates) is 2.036 (5) Å. The Fe-O-Fe angle, 167.9 (3)°, is farther from 180° than in the other compounds, the smallest value of which is $174.5(1)^{\circ}$ (Hoffman et al., 1972). There is no apparent steric or electronic reason for this. Table 2 gives selected distances and angles for the compound, while Table 3 gives average values for all distances.

A measure of the overlap of one porphyrin ring with the other in these compounds is the average torsion angle N-Fe-Fe'-N', which is 1.1 (20)° in the title

Fig. 2. An ORTEPII drawing of the contents of a unit cell, with a unit cell outlined. Atoms are shown as 25% probability ellipsoids; H atoms have been omitted for clarity.

compound, but 3.84° in the dimethyl compound (Lav et al., 1986) and 16.8 and 17.0 in the two forms of the unsubstituted octaethyl porphyrin (Cheng et al., 1995). We observe an interdigitation of ethyl groups in this compound similar to that in the unsubstituted one, with ethyl groups on both porphyrin residues pointing both 'out' (away from the bridging O atom) and 'in': for one residue, five point out and three point in, while for the other, six are out and two in (see Fig. 2). Because of the nearly eclipsed geometry, there are no instances of an ethyl group of one residue pointing between ethyl groups on the other, as Cheng et al. (1995) observed.

Experimental

A 12:1 molar mixture of NO2 to Fe(OEP)Cl was stirred under N₂ in CH₂Cl₂ for 1 h at room temperature. The dinitro compound is a by-product and was obtained by chromatography on neutral alumina, eluting with a 1:3 CH₂Cl₂:hexane mixture. The material was recrystallized by slow addition of a 2-propanol:hexane mixture to a CH₂Cl₂ solution.

Crystal data

$[Fe_2(C_{36}H_{42}N_6O_4)_2O]$	Mo $K\alpha$ radiation
$M_r = 1373.22$	$\lambda = 0.71073 \text{ Å}$
Monoclinic	Cell parameters from 25
$P2_{1}/c$	reflections
a = 15.163(3) Å	$\theta = 4.5 - 10.5^{\circ}$
b = 28.912 (8) Å	$\mu = 0.466 \text{ mm}^{-1}$
c = 16.286(6) Å	T = 296 K
$\beta = 91.02(2)^{\circ}$	Needle (diamond cross-
$V = 7138 (4) \text{ Å}^3$	section)
Z = 4	$0.41 \times 0.27 \times 0.14 \text{ mm}$
$D_x = 1.28 \text{ Mg m}^{-3}$	Dark red-purple

Data collection

Enraf-Nonius CAD-4	$R_{\rm int} = 0.056$
diffractometer	$\theta_{\rm max} = 20^{\circ}$
ω scans	$h = -14 \rightarrow 14$
Absorption correction:	$k = -27 \rightarrow 27$
none	$l = 0 \rightarrow 15$
14033 measured reflections	3 standard reflections
6661 independent reflections	frequency: 150 min
6661 observed reflections	intensity decay: <0.5%
(All made as is an and E2	

(All reflections used, F_o^2 positive and negative)

Refinement

Refinement on F^2 $R(F_o^2 > 0) = 0.086$ (5900 reflections) $R[F_o^2 > 3\sigma(F_o^2)] = 0.052$ (3872 reflections) $wR(F^2) = 0.013$ S = 1.406661 reflections 611 parameters H-atom parameters not refined, positions calculated (C-H 0.95 Å) $w = 1/\sigma^2(F_o^2)$ $(\Delta/\sigma)_{\rm max} = 0.01$ $\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.46 \ {\rm e} \ {\rm \AA}^{-3}$ Extinction correction: none Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

C51

C67

N12

08

N10

C55

-0.0477 (5)

-0.1120 (5)

0.1812 (2)

0.1249 (3)

0.2202 (4)

0.1123 (5)

0.043 (2)†

0.064 (3)

Table 1. Fractional atomic coordinates and isotropic of	r
equivalent isotropic displacement parameters (Å ²)	

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	x	у	Z	$U_{\rm iso}/U_{\rm eq}$
Fel	0.2438 (1)	0.0661 (1)	0.3877(1)	0.0308 (2)
NI	0.3805 (3)	0.0634 (2)	0.4012 (3)	0.034 (1)†
Cl	0.5278 (4)	0.0815 (2)	0.4297 (4)	0.034 (2)†
C2	0.4365 (4)	0.0887 (2)	0.4523 (4)	0.031 (1)†
C21	0.6115 (5)	0.0980 (3)	0.4713 (5)	0.054 (2)
C22	0.6434 (5)	0.0658 (3)	0.5399 (5)	0.080 (3)
C3	0.4021 (4)	0.1160 (2)	0.5134 (4)	0.034 (2)†
C4	0.3158 (4)	0.1227 (2)	0.5382 (4)	0.032 (2)†
N5	0.4697 (4)	0.1452 (3)	0.5570 (4)	0.054 (2)
02	0.4878 (4)	0.1828 (2)	0.5261 (4)	0.072 (2)
03	0.5022 (4)	0.1299 (2)	0.6206 (4)	0.076 (2)
N2	0.2462 (3)	0.1009 (2)	0.5003 (3)	0.034 (2)†
C5	0.2829 (4)	0.1530 (2)	0.6028 (4)	0.037 (2)†
C6	0.1951 (4)	0.1501 (2)	0.6000 (4)	0.038 (2)†
C23	0.3332 (5)	0.1801 (2)	0.0087(5)	0.051(2)
C24	0.3498 (5)	0.1504(3)	0.7440(5)	0.073(3)
C7	0.1/21(4) 0.1200(5)	0.1171(2) 0.1766(2)	0.5300 (4)	0.030 (2)1
C25	0.1290(3)	0.1700(3)	0.0467 (3)	0.037(2)
C20	0.0920 (0)	0.2170(3)	0.0009(0)	0.065(3)
C0	0.0809 (3)	0.1029(2)	0.3173 (4)	0.044(2)
N3	0.0392(4) 0.1143(3)	0.0700 (2)	0.4000(4) 0.4121(3)	0.040(2)
CIO	-0.0311(5)	0.0432(2)	0.4121(3) 0.4444(4)	0.036(2)
CII	-0.0316(5)	0.0240(2)	0.3866(4)	0.046(2)
C27	-0.1084(5)	0.0791(3)	0.4859 (5)	0.066 (3)
C28	-0.1341(6)	0.1258 (4)	0.4508 (7)	0.113 (4)
C12	0.0606 (5)	0.0164(2)	0.3652 (4)	0.043(2)t
C29	-0.1136 (5)	0.0025 (3)	0.3487 (5)	0.069 (3)
C30	-0.1469 (6)	0.0305 (4)	0.2747 (6)	0.105 (4)
C13	0.0969 (5)	-0.0145 (2)	0.3103 (4)	0.041 (2)†
C14	0.1829 (5)	-0.0211(2)	0.2858 (4)	0.042 (2)†
N6	0.0308 (5)	-0.0453 (3)	0.2675 (5)	0.063 (2)
04	0.0119 (4)	-0.0817 (2)	0.3020 (4)	0.093 (2)
05	0.0001 (4)	-0.0316 (2)	0.2020 (4)	0.090 (2)
N4	0.2505 (3)	0.0072 (2)	0.3140 (3)	0.032(1)†
C15	0.2174 (5)	-0.0534 (2)	0.2254 (4)	0.046 (2)†
C16	0.3009 (5)	-0.0417 (2)	0.2136 (4)	0.040 (2)†
C31	0.1743 (5)	-0.0957 (3)	0.1885 (5)	0.070 (3)
C32	0.1819 (7)	-0.1371 (3)	0.2448 (7)	0.120 (5)
C17	0.3218 (4)	-0.0049 (2)	0.2710 (4)	0.035 (2)†
C33	0.3657 (5)	-0.0628 (3)	0.1545 (5)	0.056 (2)
C34	0.4185 (6)	-0.1022 (3)	0.1906 (6)	0.097 (3)
C18	0.4061 (5)	0.0129 (2)	0.2841 (4)	0.046 (2)†
C19	0.4351 (4)	0.0422 (2)	0.3458 (4)	0.037 (2)†
C20	0.5260 (4)	0.0531 (2)	0.3630 (4)	0.037 (2)†
C35	0.6032 (4)	0.0328(3)	0.3185 (5)	0.056 (3)
01	0.0239 (3)	-0.0165(3)	0.3474 (6)	0.079(3)
01 E-2	0.2275(3)	0.1111(1)	0.3100 (3)	0.037(1)
rez N7	0.2343(1) 0.2600(2)	0.1551(1) 0.1630(2)	0.2390(1)	0.030(2)
	0.3099 (3)	0.1039(2) 0.1558(3)	0.2278 (3)	0.051(1)
C41 C42	0.3195(3) 0.4296(4)	0.1338(3) 0.1404(2)	0.2010(3)	0.035(2)
C 61	0.4250(4)	0.1404(2) 0.1446(4)	0.1803(7)	0.097 (5)
C 62	0.6004(3)	0.1763(4)	0.0891 (8)	0.077(5)
C43	0.0236(4)	0.1082(2)	0.1224(4)	0.034(2)
C44	0.3196 (4)	0.0943(2)	0.0979(4)	0.030(2)t
N 11	0.4764 (4)	0.0842(3)	0.0801 (5)	0.054(2)
06	0.5078 (4)	0.0495 (2)	0.1127(4)	0.081(2)
07	0.4986 (4)	0.0999 (2)	0.0141 (4)	0.075 (2)
N 8	0.2451 (3)	0.1138 (2)	0.1314 (3)	0.029 (1)†
C45	0.2939 (4)	0.0594 (2)	0.0370 (4)	0.037 (2)†
C46	0.2049 (5)	0.0590 (2)	0.0346 (4)	0.044 (2)†
C63	0.3476 (5)	0.0301 (3)	-0.0195 (5)	0.055 (2)
C64	0.3576 (5)	0.0524 (3)	-0.1042 (5)	0.071 (3)
C47	0.1744 (4)	0.0930 (2)	0.0932 (4)	0.036 (2)†
C48	0.0868 (4)	0.1036 (2)	0.1072 (4)	0.041 (2)†
C65	0.1427 (5)	0.0293 (3)	-0.0189 (5)	0.062 (3)
C66	0.1215 (7)	-0.0132 (3)	0.0266 (6)	0.099 (4)
C49	0.0523 (4)	0.1369 (2)	0.1579 (4)	0.036 (2)†
N 9	0.1022 (3)	0.1646 (2)	0.2098 (3)	0.031 (1)†
C 50	-0.0405 (4)	0.1469 (2)	0.1640 (4)	0.041 (2)†

C68	-0.1183 (6)	0.1	445 (4)	0.0268 (6)	0.097 (4)
C52	0.0411 (4)	0.1	923 (2)	0.2484 (4)	0.037 (2)†
C69	-0.1365 (5)	0.2	2035 (3)	0.2414 (6)	0.076 (3)
C70	-0.1624 (6)	0.2	2413 (3)	0.1833 (7)	0.111 (4)
C53	0.0704 (5)	0.2246 (2)		0.3073 (4)	0.038 (2)†
C54	0.1536 (4)	0.2367 (2)		0.3327 (4)	0.032 (2)†
N12	-0.0043(4)	0.2490 (3)		0.3480 (5)	0.055 (2)
08	-0.0302(4)	0.2851 (2)		0.3167 (4)	0.080(2)
09	-0.0321(4)	0.2320 (2)		0.4112 (4)	0.086 (2)
N10	0.2270 (3)	0.2151(2)		0.3045 (3)	0.032 (1)†
C55	0.1794 (4)	0.2	2731 (2)	0.3930 (4)	0.039 (2)†
C56	0.2661 (4)	0.2	2708 (2)	0.4001 (4)	0.040(2)t
C71	0 1238 (5)	0.3	3086 (3)	0.4361 (4)	0.051(2)
C72	0.1136 (6)	0.3	3532 (3)	0.3863 (5)	0.072(3)
C57	0.2077(4)	0.	3348(2)	0.3003(3)	0.072(3)
C73	0.2776(5)	0.2	2002 (2)	0.3433 (5)	0.057(2)
C74	0.3270(3)	0	002 (J) 0752 (2)	0.4343 (3)	0.000(3)
C74	0.3447(0)	0.2	2733 (3)	0.3334(3)	0.081(3)
C38	0.3641 (3)	0.	2232 (2)	0.3339 (4)	0.047 (2)
C 39	0.4195 (5)	0.	1918(2)	0.2/94 (4)	0.042(2)
C60	0.5107 (5)	0.	1865 (3)	0.2636 (5)	0.059 (2)T
C75	0.5851 (6)	0.	2115 (4)	0.3118 (8)	0.115 (4)
C76	0.5933 (7)	0.3	2581 (5)	0.2856 (10)	0.180 (6)
			$\dagger U_{\rm iso}.$		
ፕሬኬነ	- 2 Salarta	d 4	d diataw		
Tabl	e 2. selecie	a bon	a aisian	ices (A) ana a	ingles ()
Fe1-01		1.763 (4	I) Fe	2—N10	2.090 (5)
Fe201		1.751 (4	I) NS	5—02	1.233 (9)
Fe1—N1		2.083 (5	5) N.S	5—03	1.221 (9)
Fe1—N2		2.092 (5	5) NG	5—04	1.229 (10)
Fe1-N3		2.099 (5	5) NG	5—05	1.221 (10)
Fe1—N4		2.086 (5	5) N	11—06	1.228 (9)
Fe2—N7		2.091 (5) NI	11—07	1.219 (9)
Fe2—N8		2.097 (5	5) N	12-08	1.225 (9)
Fe2-N9		2.078 (5) N	12—09	1.222 (10)
Fe1-01-	—Fe2	167.9 (3) N'	7—Fe2—N10	88.8 (2)
N1-Fe1-	_N2	85.6 () N	7—Fe2—O1	103.7(2)
N1_Fe1	_N3	154 4 (2) NS	R_Fe2_N9	891(2)
N1_Fe1	N4	884(2) NS	$S_{Ee}^{-102} = 10$	153 7 (2)
N1 Eal	-01	102.0 (2	2) ING 2) NG	R = 2 - 110	103.7(2)
NO Eal	01 N2	00 5 (2) ING 2) NG	$E_{2} = 01$	85 4 (2)
N2-rei-		162.9 (2) IN: D) N(- Fe2NIU	6J.4 (2)
N2-rel-	-N4	153.8 (4	2) N	9-Fe2-01	101.9 (2)
N2—Fel-	-01	103.0 (2	2) N	10—Fe2—01	103.1 (2)
N3-Fel-	N4	86.0 (2	2) O	2—N5—O3	125.2 (7)
N3—Fe1-	01	102.6 (2	2) O4	4—N6—O5	126.0 (7)
N4—Fe1-	01	103.2 (2	2) O(6N1107	125.1 (7)
N7—Fe2-	—N8	85.2 (2	2) OS	8—N12—O9	125.5 (7)
N7—Fe2-	_N9	154.4 (2	2)		
	Table 3.	Avera	ige bon	d distances (A	Å)
	N		C ^a	1 275 (11)	
		—	C(march)	1.3/3(11)	
	U =	_	C(meso)	1.363 (9)	
	C "	_	C	1.454 (15)	
	C <i>b</i>	_	C ^b	1.343 (15)	
	C <i>b</i>	_	C(ethv1)	1.516 (14)	
	C(ethvl)		C(ethvl)	1.51 (3)	
	C(meso)) —	$N(O_2)$	1.496 (8)	
	_(2/		
Notes	: (a) α -C atom	in pyrr	ole ring;	(b) β -C atom in	pyrrole ring.

The locations of the Fe atoms were found from a sharpened Patterson map and the remaining non-H atoms were located by successive structure factor-Fourier calculations. The structure was refined in one full matrix with anisotropic displacement parameters for the Fe and ethyl C atoms. H atoms were assigned isotropic B values of $1.2B_{eq}$ of the bonded C atom and were repositioned several times during the refinement.

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CRYM (Duchamp, 1964). Program(s) used to solve structure: CRYM. Program(s) used to refine structure: *CRYM*. Molecular graphics: *ORTEP*II (Johnson, 1976). Software used to prepare material for publication: *CRYM*.

WPS thanks Harry B. Gray for insightful comments on the structure. This work was supported by the Gas Research Institute, Chicago, IL, and the US Department of Energy, Morgantown Energy Technology Center, Morgantown, WV.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: BK1130). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Cheng, B., Hobbs, D. J., Debrunner, P. G., Erlebacher, J., Shelmutt, J. A. & Scheidt, W. R. (1995). *Inorg. Chem.* **34**, 102–110.
- Duchamp, D. J. (1964). Am. Crystallogr. Assoc. Meet. Bozeman, Montana, Paper B14, p. 29.
- Ellis, P. E. Jr, Lyons, J. E. & Shaikh, S. N. (1994). Catal. Lett. 24, 79-83.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Gold, A., Jayaraj, K., Doppelt, P., Fischer, J. & Weiss, R. (1988). Inorg. Chim. Acta, 150, 177-181.
- Henling, L. M., Schaefer, W. P., Hodge, J. A., Hughes, M. E., Gray, H. B., Lyons, J. E. & Ellis, P. E. Jr (1993). Acta Cryst. C49, 1743– 1747.
- Hoffman, A. B., Collins, D. M., Day, V. W., Fleischer, E. B., Srivastava, T. S. & Hoard, J. L. (1972). J. Am. Chem. Soc. 94, 3620–3626.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Lay, K.-L., Buchler, J. W., Kenny, J. E. & Scheidt, W. R. (1986). Inorg. Chim. Acta, 123, 91-97.
- Strauss, S. H., Pawlik, M. J., Skowyra, J., Kennedy, J. R., Anderson, O. P., Spartalian, K. & Dye, J. L. (1987). *Inorg. Chem.* 26, 724–730.

Acta Cryst. (1995). C51, 2255-2258

3,4-Bis(*tert*-butoxy)-2,4-cyclopentadien-1one and its *fac*-Tricarbonyliron(0) Complex

XAVIER SOLANS AND MERCÈ FONT-BARDIA

Departamento Cristallografia i Mineralogia, Universitat de Barcelona, Martí i Franqués s/n, 08028 Barcelona, Spain

(Received 7 December 1994; accepted 1 March 1995)

Abstract

The crystal structures of 3,4-bis(*tert*-butoxy)-2,4cyclopentadien-1-one, $C_{13}H_{20}O_3$, and *fac*-[η^5 -3,4bis(*tert*-butoxy)-2,4-cyclopentadien-1-one]tricarbonyliron(0), $[Fe(C_{13}H_{20}O_3)(CO)_3]$, have been determined. The organic compound is planar with the positions of the double bonds well defined. The inclusion of an Fe(CO)₃ moiety induces a loss of planarity, producing an envelope form and delocalization of the double bonds.

Comment

The ring of the 3,4-bis(*tert*-butoxy)-2,4-cyclopentadien-1-one molecule, (II), is planar; the largest deviation of an atom from the mean plane is 0.001 (5) Å. The double bonds are well defined with C(2) = C(3) and C(4) = C(5)of average length 1.321 (6) Å, and C(3) = C(4) of length 1.530 (5) Å.

The Fe atom of the iron complex, (I), is octahedrally coordinated to three carbonyl ligands in fac positions and the 3,4-bis(tert-butoxy)-2,4-cyclopentadien-1-one moiety on the opposite face of the octahedron. The Fe-CO bond lengths [average value 1.807 (9) Å] are similar to those observed in other iron complexes with C_{sp^2} atoms trans to the carbonyl ligands (average value 1.790 Å) (Ros, Viñas, Mathieu, Solans & Font-Bardia, 1988; Yañez, Ros, Mathieu, Solans & Font-Bardia. 1990; Yañez, Ros, Solans, Font-Bardia & Mathieu, 1990; Yañez, Ros, Salans, Font-Altaba & Mathieu, 1990). The distance between the centroid of the fivemembered ring and the Fe atom is 1.777 (4) Å, similar to that observed in ferrocenyl (1.64 Å) (Bosque, Font-Bardia, López, Sales, Silver & Solans, 1994; López, Solans & Tramuns, 1994).

The greatest π -donor character of C(1) in the fivemembered ring produces a C(8)—Fe—Cp—C(1) torsion angle of -6.3 (2)° (Cp is the centroid of the cyclopentadienyl ring), thus avoiding a carbonyl group in the *trans* position. It also results in a lengthening of the Fe—C(1) bond [2.368 (4) Å] in comparison to the average of 2.106 (26) Å for the remaining Fe— C(ring) bond lengths, as well as the loss of planarity of the five-membered ring [envelope form, with C(1) -0.298 (4) Å out of the mean plane defined by the remaining four atoms]. This is associated with an electronic delocalization of the C(3)—C(4) bond, which has a length of 1.444 (5) Å, similar to the average value of C(2)—C(3) and C(4)—C(5) [1.436 (5) Å]. Thus, the